If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+61y+10=0
a = 6; b = 61; c = +10;
Δ = b2-4ac
Δ = 612-4·6·10
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3481}=59$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(61)-59}{2*6}=\frac{-120}{12} =-10 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(61)+59}{2*6}=\frac{-2}{12} =-1/6 $
| -135x+4550=3470 | | 2x+17=106 | | -5/15=10/9u | | 5x+50=x | | -8a^2+12a-4=0 | | 5.6x=39.2 | | -2(3x+4)=34 | | -7x+7=-4x-14 | | 3a+32=80 | | −1+30x+24=65x+4 | | 7.63+f=86.5 | | 5-2x=-6x-27 | | m+7=3+m4 | | -5+5x=4x+1 | | 3(y+200)=3,000 | | 12x=17x+5 | | 12=17x+5 | | -3z^2-17z-24=0 | | 17=2/3x+2 | | 14x+7=-31-5x | | -3x+39=3(x+3) | | 50c+100=3c+6 | | 15+3n+8n=-6n-3+1 | | (3y+22)+4y+106=180 | | 3.4=5.2-0.9x | | 380x=-210x+8850 | | ∠A=8x-10∠B=3x+90 | | 7x+2=2(8x-8) | | –9r+10=–8r | | 12x+52=-28+7x | | -(m-4)=2 | | 5(y-4)=7-20 |